Perfect graphs are kernel solvable

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect graphs are kernel solvable

In this paper we prove that perfect graphs are kernel solvable, as it was conjectured by Berge and Duchet (1983). The converse statement, i.e. that kernel solvable graphs are perfect, was also conjectured in the same paper, and is still open. In this direction we prove that it is always possible to substitute some of the vertices of a non-perfect graph by cliques so that the resulting graph is ...

متن کامل

Parity graphs are kernel-M-solvable

While the famous Berge’s Strong Perfect Graph Conjecture (see [l] for details on perfect graphs) remains a major unsolved problem in Graph Theory, an alternative characterization of Perfect Graphs was conjectured in 1982 by Berge and the author [3]. This second conjecture asserts the existence of kernels for a certain type of orientations of perfect graphs. Here we prove a weaker form of the co...

متن کامل

STS-graphs of perfect codes mod kernel

We show that a 1-error-correcting code C is ‘foldable’ over its kernel via the Steiner triple systems associated to the codewords whenever C is perfect. The resulting ‘folding’ produces a graph invariant that for Vasil’ev codes of length 15 is complete, showing in particular that there exist nonadditive propelinear codes and just one nonlinear Vasil’ev additive code up to equivalence.

متن کامل

On kernel-perfect orientations of line graphs

We exploit the technique of Galvin (1995) to prove that an orientation D of a line-graph G (of a multigraph) is kernel-perfect if and only if every oriented odd cycle in D has a chord (or pseudochord) and every clique has a kernel. @ 1998 Elsevier Science B.V. All rights reserved

متن کامل

On a class of kernel-perfect and kernel-perfect-critical graphs

Chilakamarri, K.B. and P. Hamburger, On a class of kernel-perfect and kernel-perfect-critical graphs, Discrete Mathematics 118 (1993) 253-257. In this note we present a construction of a class of graphs in which each of the graphs is either kernel-perfect or kernel-perfect-critical. These graphs originate from the theory of games (Von Neumann and Morgenstern). We also find criteria to distingui...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1996

ISSN: 0012-365X

DOI: 10.1016/0012-365x(95)00096-f